
Lecture 5 - Databases in AWS - RDS, Aurora, Elasticache (1h) 1

󾠲
Lecture 5 - Databases in AWS - RDS,
Aurora, Elasticache (1h)
Q&A about the previous lesson (3-5m)

RDS
Fully managed

no tuning required → slight customization with parameter groups
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

no SSH access to the DB instances

OS updates and patches are done automatically during the maintenance window

automated backups - point in time restore

binlogs (every 5min)

full (daily)

or manual snapshots by user (+ final snapshot at DB instance deletion)

monitoring built-in

can be private and public → depending on the VPC and subnet settings

have security groups

multi-az

only for HA and failover - cannot interact with the standby instances - they’re just sitting there
until the failover

quite expensive → mutliple idle db instances + charge for mutli-az traffic

sync replication → STRONGLY consistent

DNS name isn’t changed in case of failover - the app shouldn’t see no difference

multi-region deployments

only for disaster recovery and local performance in that region

read-replicas https://aws.amazon.com/rds/features/read-replicas/#:~:text=Amazon RDS Read
Replicas provide,for read-heavy database workloads.

offload read operations to the separate DB endpoint

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://aws.amazon.com/rds/features/read-replicas/#:~:text=Amazon%20RDS%20Read%20Replicas%20provide,for%20read%2Dheavy%20database%20workloads

Lecture 5 - Databases in AWS - RDS, Aurora, Elasticache (1h) 2

up to 5 read replicas

can be promoted to the main db instance

async replication → EVENTUALLY consistent

auto-scaling (both vertical and horizontal)

storage auto-scaling

instance type change can be initiated by user

storage is backed by ebs

encryption by KMS

if master is not encrypted from the beginning - replicas are not encrypted

can be encrypted later with snapshots manipulation and restored from snapshot

integrates natively with the Secrets Manager → automated secrets rotation

IAM authentication is supported for some engines

Supported engines

postgres

mysql

mariadb

mssql

oracle

aurora

mysql

postgres

serverless

Snapshots → https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

used for data backup

cross-region replication

encypt-decrypt operations

incremental

RDS proxy → https://aws.amazon.com/rds/proxy/

connection pooling

better performance

better scalability

also fully managed

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://aws.amazon.com/rds/proxy/

Lecture 5 - Databases in AWS - RDS, Aurora, Elasticache (1h) 3

Amazon Aurora → https://aws.amazon.com/rds/aurora/features/
Everything is the same as RDS, plus

features

more replicas (15 against 5), faster replication

x times better performance than open-source counterparts

almost instant faliover (30 seconds downtime)

20% more expensive

better monitoring

backtrack - imporved point in time recovery

Overall more complex and worth learning separately

Aurora serverless → serverless configuration https://aws.amazon.com/rds/aurora/serverless/

Aurora global database → mutli-region deployment out of the box

Elasticache
fully managed caching service

engines

redis

memcached

use cases

in-memory databases

cache for RDS

reduce the load

increase the performance

helps making apps stateless

https://aws.amazon.com/rds/aurora/features/
https://aws.amazon.com/rds/aurora/serverless/

Lecture 5 - Databases in AWS - RDS, Aurora, Elasticache (1h) 4

redis - supports multi-az and read-replicas

the app should know how to work with it!

For certification - know difference between redis and memcached architectural limitation

Redis - mutli-az with failover, read-replicas, backup and restore features (RDS)

memcached - multi-node for sharding, no HA, no backup and restore

Workshop
https://general-webapp.workshop.aws/lab2.html

https://general-webapp.workshop.aws/lab2.html

