
Lecture 7 - IAC - Cloudformation, AWS CDK, Other IaC tools (1h) 1

Lecture 7 - IAC - Cloudformation, AWS
CDK, Other IaC tools (1h)

Q&A about the previous lesson (3-5m)

IaC Concepts
Problems solved

inconsistency

inability to reproduce the configuration

human error when creating the infrastructure manually

Benefits delivered

consistent infrastructure

accountability - change introduced in the IaC code is easily detectable

documentation - docs and readme-s can be autogenerated based on code and the code itself can
serve as a documentation

easier to comply with the security standards

store, version, test the infrastructure in your source code repo

visibility over the environment without launching or accessing it

possibility to deploy infrastructure at high speed and large scale

can be automated with CI/CD

declarative syntax

infrastructure is no longer an ancient knowledge if stored in a code

Caveats ⚠

once IaC - be always IaC to avoid drifts in the environments

price of an error can be much higher

Cloudformation
Pros of using CloudFormation → https://aws.amazon.com/cloudformation/faqs/

Native AWS solution - other services often use it for resources deployment

https://aws.amazon.com/cloudformation/faqs/

Lecture 7 - IAC - Cloudformation, AWS CDK, Other IaC tools (1h) 2

yaml and json syntax supported

bunch of ready templates available →
https://aws.amazon.com/cloudformation/resources/templates/

Built-in visualiser and changes preview with ChangeSets

automatic dependency management

supports pretty much every resource → AWS resources

features:

automatic rollbacks

helper scripts (kinda like hooks)
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-helper-scripts-
reference.html

cfn-init

cfn-signal

cfn-get-metadata

cfn-hup

hooks → https://aws.amazon.com/blogs/mt/proactively-keep-resources-secure-and-
compliant-with-aws-cloudformation-hooks/

Custom resources are supported →
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html

It’s free, but you pay for the resources it created

Template anatomy → https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-
anatomy.html

Only Resources block is required

mappings → https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-
section-structure.html

conditions → https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-
section-structure.html

intrinsic functions →
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-
reference.html

(others)

Launching a VPC stack with CloudFormation

https://aws.amazon.com/cloudformation/resources/templates/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-supported-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-helper-scripts-reference.html
https://aws.amazon.com/blogs/mt/proactively-keep-resources-secure-and-compliant-with-aws-cloudformation-hooks/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html

Lecture 7 - IAC - Cloudformation, AWS CDK, Other IaC tools (1h) 3

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/ebff9876-8fdb-453a-8990-24f4
085ea7fd/vpc.yaml

Cons of using Cloudformation

no modules or extensions - writing code is simply copy and paste

can be painful to write and debug

the templates can grow very big

in order to use outputs - templates to be launched one after another

sometimes it stuck

Other topics to check out

stackSets

nested stacks

drift detection

Other tools:

Terraform → https://www.terraform.io/

simpler syntax

cloud-agnostic (single codebase for the multi-cloud)

state management (desired vs actual)

functions, loops, conditions

fancy features (like provisioners)

existing resources import, ability to interact with non-managed resources

really extendable, modular, has huge community

much easier to maintain

Pulumi → https://www.pulumi.com/

Ansible/Puppet/Chef

CDK
Define infrastructure by using one of the available programming languages→ JavaScript, TypeScript,
Python, Java, C#, and Go

CDK examples → https://github.com/aws-samples/aws-cdk-examples

https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Febff9876-8fdb-453a-8990-24f4085ea7fd%2Fvpc.yaml?table=block&id=6dff2b13-b1b3-4be6-aeba-17e6faefbfc9&spaceId=f0b66a4d-273d-4242-b927-6c11084a54a8&userId=fab9c200-9898-494a-a9b4-238457e3f3bd&cache=v2
https://www.terraform.io/
https://www.pulumi.com/
https://github.com/aws-samples/aws-cdk-examples

Lecture 7 - IAC - Cloudformation, AWS CDK, Other IaC tools (1h) 4

import os.path

from aws_cdk.aws_s3_assets import Asset

from aws_cdk import (
 aws_ec2 as ec2,
 aws_iam as iam,
 App, Stack
)

from constructs import Construct

dirname = os.path.dirname(__file__)

class EC2InstanceStack(Stack):

 def __init__(self, scope: Construct, id: str, **kwargs) -> None:
 super().__init__(scope, id, **kwargs)

 # VPC
 vpc = ec2.Vpc(self, "VPC",
 nat_gateways=0,
 subnet_configuration=[ec2.SubnetConfiguration(name="public",subnet_type=ec2.SubnetType.PUBLIC)]
)

 # AMI
 amzn_linux = ec2.MachineImage.latest_amazon_linux(
 generation=ec2.AmazonLinuxGeneration.AMAZON_LINUX_2,
 edition=ec2.AmazonLinuxEdition.STANDARD,
 virtualization=ec2.AmazonLinuxVirt.HVM,
 storage=ec2.AmazonLinuxStorage.GENERAL_PURPOSE
)

 # Instance Role and SSM Managed Policy
 role = iam.Role(self, "InstanceSSM", assumed_by=iam.ServicePrincipal("ec2.amazonaws.com"))

 role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name("AmazonSSMManagedInstanceCore"))

 # Instance
 instance = ec2.Instance(self, "Instance",
 instance_type=ec2.InstanceType("t3.nano"),
 machine_image=amzn_linux,
 vpc = vpc,
 role = role
)

 # Script in S3 as Asset
 asset = Asset(self, "Asset", path=os.path.join(dirname, "configure.sh"))
 local_path = instance.user_data.add_s3_download_command(
 bucket=asset.bucket,
 bucket_key=asset.s3_object_key
)

 # Userdata executes script from S3
 instance.user_data.add_execute_file_command(
 file_path=local_path
)
 asset.grant_read(instance.role)

app = App()
EC2InstanceStack(app, "ec2-instance")

Lecture 7 - IAC - Cloudformation, AWS CDK, Other IaC tools (1h) 5

app.synth()

pros and cons

great for serverless apps or containers

this is still compiled into the Cloudformation template → Synth
https://docs.aws.amazon.com/cdk/v2/guide/cli.html

do not be confused with SDK

CDK - define the infrastructure in code

SDK - interact with the infrastructure in code

Cool CDK hands-on is available at Stefan Maarek’s course

Q&A session
topic discussion

sharing useful external resources and links

https://docs.aws.amazon.com/cdk/v2/guide/cli.html

