8

Lecture 8 - Serverless - Lambda,
DynamoDB, APl Gateway (1h)

e Q&A about the previous lesson (3m)

Lambda

https://aws.amazon.com/lambda/fags/

e Serverless computing — https://aws.amazon.com/serverless/

o

no infrastructure management - only manage your code
o fastest time to market, awesome for MVPs and PoCs
o pay per request and execution time
o cost-efficient, no more over-provisioning and capacity-planning
o infinitely scalable and elastic
o awesome for event-driven architectures
e Serverless in AWS
o Lambda
o DynamoDB
o Cognito
o API| Gateway
o S3
o SQS
o SNS
o Kinesis (Firehose, Data Streams)
o Aurora Serverless

o Step Functions

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/serverless/

o Fargate (Serverless containers)

¢ General use cases

o web-apps - https://github.com/aws-samples/lambda-refarch-webapp

ﬁ ToDo App
GitHub
Repository
addTodo
Route 53 Amplify
Console completeTodo
] = x
15 ey 0
Devices Amazon deleteTodo
Cognito
)
ToDo API gelatlioda ltems Table
getTodo
updateTodo

o data-processing - https://github.com/aws-samples/lambda-refarch-fileprocessing

=0

0o

SNS Email Cloudwatch alarm Message sent to
Notification DLQ has messages Dead Letter queue

Lambda Funcfion
Execution Failures

i(Rt

=4 @
N Conversion Service HTML conversion Output 83

@E SQsS queue Lambda Function Bucket

Markdown object Source 83 ‘SNS nofification new

Bucket object created event
i P <

‘Sentiment Analysis ~ Sentiment Analysis DynamoDB
$SQS queue Lambda Function ‘sentiment table

Lambda Funcfion
Execution Failures

0o =@

SNS Email Cloudwatch alarm Message sent to ‘Comprehend
Notification DLQ has messages Dead Letter queue ‘Sentiment Analysis

=0

o batch processing - https://github.com/aws-samples/aws-lambda-etl-ref-architecture

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://github.com/aws-samples/lambda-refarch-webapp
https://github.com/aws-samples/lambda-refarch-fileprocessing
https://github.com/aws-samples/aws-lambda-etl-ref-architecture

Intermediate Download
results

Delete

notification

AWS Step Functions workfiow Upload Notiry
x2
Getfile Process files :::(':"LUS Aggregate Delete Amazon SNS
inventory results intermediate
results
List all files for Upload
previous day
@ Download @
OpenAQ Final
data output

o eventingestions - Sample Code

AWS Cloud

PDF Text
N
Extract Text Text

= pocx Text staging
s Split fles

Documents
bucket Extract Text

PG Laveis

Queued
Extract Text pucket Add to SQS

queue
image Labels

(©)

o
Amazon
Rekognition

etscats

Qs
Analyze Amazon
queue Iz Elasticsearch

Text Enities See

Amazon
Comprehend

o lambda@edge - CloudFront distributions requests modifications

https://aws.amazon.com/lambda/edge/

o snowball edge - https://aws.amazon.com/snowball/

o infrastructure automation

» scheduled actions (cleanups, snapshots, credentials rotations etc)

= event-driven actions (bucket object upload, CloudWatch event, CloudTrail event

etc)

= security and access control (credentials invalidations, firewall rules modifications

etc)
= CloudFormation custom resources
» everything that is not present in AWS

¢ Where to start

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://github.com/aws-samples/s3-to-lambda-patterns/tree/master/docrepository
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/snowball/

o builders - https://aws.amazon.com/getting-started/deep-dive-serverless/

o workshops - https://workshops.aws/card/serverless

o reference architectures - https://aws.amazon.com/architecture

¢ How it works

o isolated lightweight nested vm - https://aws.amazon.com/blogs/aws/firecracker-
lightweight-virtualization-for-serverless-computing/

= no shell

= Nno access to files

= N0 permissions/users
= N0 Os updates

= think of it as a code stored somewhere and executed on-demand

o readonly filesystem (write to temporary filesystem /tnp is possible); NEW - EFS for
lambda https://aws.amazon.com/blogs/aws/new-a-shared-file-system-for-your-
lambda-functions/

o processing power is added with memory (more memory allocated - more virtual
CPUs available)

(o)
¢ Main features

o pay per request + execution time - fast and efficient functions means cost-efficient
functions (note the max execution time is no more than 15min)

o lots of integrations with other services
= API| Gateway
» Kinesis (data transfomations)
= DynamoDB (trigger lambda on event)
» S3 (trigger lambda on event)
= CloudFront (lambda@edge)
» CloudWatch event bridge (scheduled actions with crontab)

= CloudWatch (logs streaming to Elastic or Kinesis)

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://aws.amazon.com/getting-started/deep-dive-serverless/
https://workshops.aws/card/serverless
https://aws.amazon.com/architecture
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/new-a-shared-file-system-for-your-lambda-functions/

= SNS, SQS (processing messages)

» Cognito (user pools and identity pools)
o runtimes

= node

= python

= java

= c# (.net core, powershell)

= go

= ruby

= custom runtime

= containers (on fargate or runtime API)

o Workshop - https://aws.amazon.com/getting-started/hands-on/build-serverless-web-

app-lambda-apigateway-s3-dynamodb-caognito/

API Gateway

31 &R
Connected Users and o =)
o
Streaming Dashboards nﬂ o 5_’ AWS Lambda E‘:} Amazon EC2
a
— — £ -
-t- -) S S Amazon
{?‘} u ? Amazon Kinesis g DynamoDB
I [~ API Gateway
A cache Other AWS = Publicly accessible
Web and Mobile | & services k@j endpoints

Applications

Amazon API Gateway

Create, publish, maintain, C\") —
° monitor, and secure APIls Q [w]
at any scale E

L Amazon =
10T Devices CloudWatch Private Applications Data Center
VPC and On-Premises

Private Applications:
VPC and On-Premises

(wTaTa]
(w[a]w]

* Fully managed RESTful and WebSockets API gateway https://aws.amazon.com/api-
gateway/faqgs/

¢ Main features

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/api-gateway/faqs/

(o]

(o)

(0]

(o]

(o]

(0]

(0]

(o]

(0]

(0]

[e)

(0]

[e)

(o]

integrates well with other AWS services
» Load Balancers
= Lambda
= WAF
= (and more)
API versioning and environments - create api stages and environments for them
Supports creating custom API keys
Swagger/OpenAPI| compatible
API requests caching, throttling, requests transformation and validation

supports canary deployments

Use cases

exposing any(?) AWS service or backend as an https endpoint

invoking lambda by network

Endpoint types

edge-optimized (CloudFront powered delivery)

regional

Auth

IAM (from within AWS or with sigv4 headers)
Cognito user pools

Lambda (custom) authorizer - JWT, OAuth

For certification (read services faq and related whitepaper)

know websocket vs restful API gateway features
stages/environments

authorization/authentication options for APl Gateway and use cases
know the most advertised features

know use cases

* Workshops - https://webapp.serverlessworkshops.io/

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html

DynamoDB

* Fully managed NoSQL database (all pros and cons of being noSQL apply here) -
https://aws.amazon.com/dynamodb/faqgs/

(o]

(0]

HA out of the box

Infinitely scalable performance and storage
fast and consistent storage

event-driven with DynamoDB streams

other benefits of being serverless - no overprovisioning, pay only for what you use
etc

¢ Main features

[e)

(0]

(0]

consists of tables that have primary keys

data stored in rows, stored items optionally have attributes
item max size is 400kb

data types supported - scalar, document, set

support partition keys + sort keys (which have to be unigque) — better explained in
Stefane Maarek’s video

capacity planned with CU (1WCU = 1KB, 1RCU=4KB)

= provisioned https://aws.amazon.com/dynamodb/pricing/provisioned/

» on-demand https://aws.amazon.com/dynamodb/pricing/on-demand/
= there are calculators, just use them <
consistency mods
= strong
» eventually (default)

data stored in partitions

¢ Other Features or Services

(0]

DAX (like a proxy or cache for perfomance boost) —
https://aws.amazon.com/dynamodb/dax/

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://aws.amazon.com/dynamodb/faqs/
https://aws.amazon.com/dynamodb/pricing/provisioned/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/dax/

o DynamoDB streams (for event-driven architecture) —
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

o For certification (read services fag and related whitepaper)
o DAX
o DynamoDB streams
o Global tables

o Workshops - https://amazon-dynamodb-labs.com/

Q&A session
¢ topic discussion

« sharing useful external resources and links

Lecture 8 - Serverless - Lambda, DynamoDB, API Gateway (1h)

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://amazon-dynamodb-labs.com/

